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Abstract—Rovers operating on Mars have been delayed, di-
verted, and trapped by loose granular materials. Vision-based
mobility prediction approaches often fail because hazardous
sand is difficult to distinguish from safe sand based on surface
appearance alone. Unlike surface appearance, the thermal inertia
of terrain is directly correlated to the same geophysical properties
that control slip. This paper presents a quantitative analysis
showing that considering thermal inertia improves rover slip
prediction on Mars using in-situ data from the Curiosity rover.
Thermal inertia is estimated for each slip measurement in sand
using both on-board and orbital instruments. Slip models are
learned using a mixture of experts approach where the experts
are identified using thermal inertia. Two-expert models are
compared to a single-expert, vision-only model to show that slip
predictions are improved by separating high-slip, low thermal
inertia sand from low-slip, high thermal inertia sand. These
results support the hypothesis that the consideration of thermal
inertia improves mobility estimates for rovers on Mars.

I. INTRODUCTION

The most significant mobility challenges that rovers have
encountered on Mars have been caused by loose, granular
materials. Sandy regions cause wheels to slip and sink, which
slows progress and risks entrapping a vehicle. However, terrain
on Mars is very diverse. Both the macroscopic and micro-
scopic characteristics of sand varies greatly over the surface.
The inherent difficulty of predicting slip is exacerbated by
the risk-averse nature of planetary rover missions that avoid
sand regions whenever possible. This results in few training
examples from which to learn a competent prediction model.
Consequently feature-intensive, visual approaches that only
consider surface appearance risk significant over-fitting. In-
stead, this paper uses thermal inertia as a single measurement
that is highly correlated to the underlying granular properties
that govern wheel-terrain interaction.

Loose, granular terrain has caused mobility problems for
Curiosity and the Mars Exploration Rovers, Spirit and Oppor-
tunity. All three rovers have suffered significant delays caused
both by excessive slip in hazardous sand and time wasted
analyzing safe sand before successful traversal [4} I50]. The
most serious mobility problem was encountered by Spirit when
its wheels fell through a thin cemented surface layer (duricrust)
into weak, undetected sand. The sand entrapped the rover until
it eventually stopped responding to commands [3]]. Means to
quickly and accurately evaluate traversability of terrain before
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contact would significantly increase the safety and operational
cadence of rovers on Mars.

Thermal inertia is a physical property of a material that
represents its resistance to changes in temperature and can be
indirectly estimated by fitting an analytical model to observa-
tions of surface temperature. In a granular material, thermal
inertia is strongly influenced by many of the same physical
characteristics that influence wheel terrain interaction, which
suggests that thermal inertia measurements could improve
predictions of traversability [9]. Recent work has used this
relationship to distinguish loose and compact granular mate-
rials both experimentally on Earth [12, |13]] and in simulation
on the Moon [14]. Unfortunately, due to differences in geol-
ogy, gravity, and atmospheric pressure, showing a correlation
between thermal inertia and mobility on Earth and the Moon
is not a guarantee that the same correlation exists on Mars.
There is some evidence that thermal inertia is correlated to
traversability on Mars as well [38]]; however, to the best of
the authors’ knowledge, no study has investigated its ability
to improve mobility predictions using in-situ rover data.

This paper analyzes the potential of thermal inertia mea-
surements to improve slip prediction in Martian sand using
in-situ data from the Curiosity rover. For each wheel slip
measurement in sand, thermal inertia is estimated using both
Curiosity’s onboard Ground Temperature Sensor (GTS) and
the orbital Thermal Emission Imaging System (THEMIS). A
mixture of experts (MoE) approach is used to model slip
behavior. This model assumes that slip cannot be explained
by a single type of sand but is instead a combination of
multiple independent models. A soft-max function assigns data
to experts using thermal inertia as its input. Results from two-
expert models are compared against a single-expert, vision-
only model to show the ability of thermal inertia to identify
high-slip sand regions using both ground-based and orbital
observations.

This paper is organized as follows. Section [I] discusses
related work in slip prediction. Section describes the
connection between thermal inertia and mobility. Section
outlines how thermal inertia is estimated and slip models are
learned. Section [V| describes the dataset from Curiosity used
in this analysis. Analysis of slip models and the efficacy
of thermal inertia is discussed in Section Section
discusses conclusions and directions for future work.



II. RELATED WORK

The vast majority of traversability prediction approaches use
either vision, geometric sensing, or a combination of both. For
the Mars rovers, operators predict slip by first identifying ter-
rain class visually from Navcam imagery then estimating slip
from average terrain slope using Earth-calibrated slip versus
slope curves [24]]. Recent work on Curiosity has improved this
process for Curiosity using a CNN-based classifier to visually
classify terrain and estimating slip using models learned from
in-situ experiences on Mars [48]]. However, this approach still
fails to accurately predict slip in sand. Slip behavior instead
appears to be a function of multiple types of sandy terrain.
Cunningham et al. [15] use spatial correlations to improve
slip prediction in sand. However, this approach still requires
proprioceptive measurements of slip and thus cannot detect
differences in sand traversability before contact.

The rovers also have on-board autonomy and safeguarding
for mobility. When operating autonomously, they use the
Grid-based Estimation of Surface Traversability Applied to
Local Terrain (GESTALT) algorithm to avoid rough terrain
and geometric hazards; however, this does not address slip
prediction [19]. In addition, due to computational cost, the
rover is rarely commanded to navigate autonomously. Instead,
most rover traverses are designed by rover operators and drive
blindly with the exception of safeguarding by VO-based slip
detection [32]. When the VO system predicts that slip has
exceeded an operator-defined threshold the drive is stopped
and the rover waits for direction from Earth [33]].

Terrestrial long-range slip prediction research has also pri-
marily used visual and geometric sensing techniques. Halatci
et al. [22] developed a terrain classifier with color, texture, and
geometric features to identify rocky, sand, and mixed terrain in
Mars rover imagery. Brooks and Iagnemma [7]] expanded upon
this classifier to instead predict coefficient of traction with a
multi-class SVM. Angelova et al. used a mixture of experts
approach to first identify terrain classes from imagery then
predict slip given the terrain class. Terrain classes were learned
from manually labeled imagery and slip was learned from
experience using locally weighted projection regression [2} [1]].
This paper follows a mixture of experts approach as well,
but the classes are instead determined by thermal inertia and
learned without supervision. Otsu et al. [37] demonstrated
improved visual terrain classification with sparse labeling
by co-training with a vibration-based classifier but did not
address slip prediction. Ho et al. [25] recently used Gaussian
Processes to estimate traversability in deformable terrain based
on geometry alone but did not test in sandy regions. All of
these approaches suffer from the same shortcoming; they only
see macroscopic surface appearance.

In contrast to visual imagery, thermal measurements provide
information about the bulk mechanical properties both at and
below the surface [45]. This correlation has been used to
infer global geologic composition from orbit on Earth [43],
the Moon [51} 5], and Mars [18| 35]]. Orbital thermal inertia
analysis has been used in landing site selection for rovers and

is used in long-range strategic traverse planning [20, [16]. Un-
fortunately, the resolution of orbital thermal imaging sensors
is too low to detect many rover-scale hazards. The Minia-
ture Thermal Emission Spectrometer (Mini-TES) instruments
aboard the Mars Exploration Rovers and the GTS on Curiosity
have been used to analyze surface physical properties but were
not designed for traversability prediction and are not used in
daily path planning [23} [17, [34]. This paper presents a quanti-
tative analysis of whether considering thermal inertia improves
slip prediction on Mars using data from Curiosity’s GTS [49]
and the Mars Reconnaissance Orbiter’s THEMIS [[11]].

III. RELATING THERMAL INERTIA AND MOBILITY

Thermal inertia is a characteristic of a material that governs
its resistance to changes in temperature. Thermal inertia is of
interest in this work because of its correlation to mobility. This
section presents background on thermal inertia, the geophysi-
cal properties that govern it, and its importance to mobility.

A. Analytical Surface Temperature Model

Here a thermal model is presented in the context of Mars
at equatorial to mid-latitudes without frost following the
derivation in Putzig [44]. Both the surface and subsurface
temperature of homogeneous terrain is governed by the well-
known, semi-infinite one-dimensional heat diffusion equation.
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where k is thermal conductivity, p is bulk density, c is specific

heat capacity, Z is the distance into the terrain, and ¢ is time.

The lower boundary condition is usually assumed to be

either insulating or a constant geothermal heat flux. The

surface boundary condition at Z = 0 is balance of heat fluxes
from the Sun, the atmosphere, and the ground.
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where A is albedo, € is emissivity, ¢ is the Stefan—Boltzmann
constant, P is the period of a diurnal cycle, Ry, is shortwave
radiation from the Sun, R;, is longwave radiation emitted by
the atmosphere, T is the surface temperature, and % ) is

2

the temperature gradient at the surface. Let Z' = Z/§ where &
is the thermal skin depth defined by 8% = %%. At Z =9 the
temperature wave is attenuated by a factor of e~! [44].

The most important term in Equation [2] is I, which repre-

sents the thermal inertia. Thermal inertia is defined as:

1= +/kpc 3)

with units of Jm’zK’ls_% [44]. A change of variables in
Equation |1 from Z to Z' results in:
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This isolates all of the terrain properties in / in Equation [2]
Hence under periodic illumination, with known surface heat



fluxes and albedo, thermal inertia controls the surface tem-
perature. Thermal inertia can be estimated by fitting observed
surface temperatures to an analytical model [35]. For more
detailed derivations see and [28]].

B. Thermal Inertia

Thermal inertia is a function of the thermal conductivity,
heat capacity, and density of a material. In a granular material,
heat capacity is not strongly affected by density or particle
size, varying by factors of no greater than 2 or 3 on Mars.
Variations in density directly affect thermal inertia as defined
in Equation [3] However, density varies by less than a factor
of 2 in sandy materials. The most significant factor affecting
thermal inertia is thermal conductivity [44].

In granular materials, bulk thermal conductivity is deter-
mined by three different heat transfer mechanisms: (1) heat
conducted through gas in the void space, (2) radiative heat
transfer, and (3) solid path heat conduction [39]. The most
significant heat transfer path is by gas conduction. However,
this is strongly affected by atmospheric pressure [42]]. In part
because gas conduction dominates in both cases, differences
in pressure make it difficult to ensure that terrestrial results
will translate to Mars. Radiative heat has only a minor affect.
Solid path heat conduction between grains is more significant
but is limited by the small grain contacts. The effect is that
thermal inertia is not a strong function of the mineralogical
composition of a granular material but rather the physical
properties of its grains [27)). This is critical for this work since
traversability is dependent on physical properties as well.

At Martian pressure, thermal inertia in a granular material
is a function of its particle size, density, and cementation. An
increase in particle size greatly increases conductivity, which
in turn greatly increases thermal inertia [42]. An increase in
density also causes a slight increase in thermal conductiv-
ity [41]]. However, since thermal inertia is a direct function
of density as well, it is still significant. Lastly, an increase
in cementation causes corresponding increases in thermal
conductivity and thermal inertia [40]. Apparent thermal inertia
is also strongly affected by layering of materials. A thin layer
of sand on top of bedrock will have much higher thermal
inertia than very deep sand [43]. See Piqueux and Christensen
[39] for an in depth discussion of thermal inertia.

C. Relation to Mobility

For a given rover, wheel-terrain interaction in a loose
granular material is strongly influenced by particle size and
density [8]. Having a larger distribution of particle sizes with
larger particles increases soil strength [26, [36]. Similarly,
denser, more compact sands are more traversable than fine,
loose sands [54}52]]. In addition, as particles become cemented
together the terrain becomes more cohesive and, thus, easier to
traverse [33]]. Therefore, because particle size, density, and
cementation strongly influence both traversability and thermal
inertia, there is a strong correlation between traversability and
thermal inertia. Similarly, as depth of surface sand increases
thermal inertia [44] and traversability [4] both decrease.
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Fig. 1: Transition from loose to compact sand regions shown in
color and thermal data. Loose regions were manually loosened
with a shovel, and compact regions were compacted with a
vibratory compactor. Overlaid plots of estimated nighttime
thermal inertia and measured slip are shown on the right.
Missing grid cells in the thermal inertia image corresponds
to regions with significant height variance.

A correlation between the thermal properties of granular ter-
rain and traversability has been demonstrated experimentally
on Earth [12]. A qualitative example is shown in Figure
[I] In this example, loose and compact granular materials are
difficult to distinguish in visual imagery but are evident in the
nighttime thermal image. Thermal inertia was estimated using
the model described in Cunningham et al. [12] with ground
truth measurements of solar and atmospheric heat flux. A four
wheeled rover was driven over the surface while dragging a
weighted sled to induce slip. Slip was estimated by comparing
ground truth position from a total station to wheel odometry.
Slip at a given location was averaged over several drives while
avoiding previous wheel tracks. Figure [I] provides a visual of
the strong connection between thermal inertia and mobility on
Earth. There is also a clear correlation in the nighttime thermal
image, which can illuminated relative difference in thermal
inertia within an image. However, using thermal inertia models
rather than raw imagery enables comparisons across times
of day, seasons, and atmospheric conditions. Unfortunately,
because atmospheric pressures are very different, a correlation
between thermal inertia and traversability on Earth does not
guarantee a corresponding correlation on Mars.

In this work, wheel slip will be used as a measure of
traversability. Percent slip is defined as:

1— % x 100, v < vy (driving)

Vrof , Q)
=+ —1) x100, v> v, (braking)

y:

where v is the rover’s velocity and v,.r is the commanded
velocity. Slip is defined for —100% <y < 100%. y > 0
indicates that the rover’s speed is slower than commanded,
and y < 0 indicates that is is faster than commanded.



IV. SLIP PREDICTION WITH THERMAL INERTIA CLASSES

This section describes an approach for that uses thermal
inertia to improve slip prediction. Thermal inertia is estimated
for each slip measurement with data from Curiosity’s GTS.
Slip models are then learned using a mixture of experts (MoE)
model that automatically separates terrain classes by thermal
1nertia.

A. Thermal Inertia Estimation

Thermal inertia is estimated for each slip measurement in
sand. Curiosity is equipped with the Ground Temperature
Sensor (GTS) that measures ground temperatures for scientific
investigation of the geologic composition and atmospheric
processes on Mars. The GTS is a set of thermopiles that
are located on Curiosity’s mast with a fixed pointing at
120°clockwise off azimuth and 22°down. It has a horizontal
field of view of 60°and a vertical field of view of 40°. It mea-
sures one temperature value from an ellipse of nominally 100
m? at 4 o’clock relative to the rover’s forward direction. This
region is adjacent to and not in the path of the rover during
straight drives. The baseline mode of operation is measuring
temperature at 1 Hz for about 6 minutes at the beginning
of every hour [49]. This is not an ideal sensor for mobility
prediction because: (1) it only records one measurement from
the entire ellipse and (2) it does not measure the terrain
ahead of the rover. However, it still provides an unprecedented
amount of data, which enables this investigation.

The KRC model was used to simulate surface tempera-
tures [28]]. Given a set of input parameters, it estimates the
surface heat fluxes in Equation [2 and forward simulates
the heat diffusion equation (Equation [) to find the surface
temperature at a desired time of day. Forward simulation
of both surface and subsurface temperatures is accomplished
using an iterative finite-differences approach. This model has
been used extensively for orbital thermal analysis [18] and
recently for GTS data [23]]. For more detail see Kieffer [28].

The KRC model requires a number of input parameters to
generate predicted surface temperatures. Thermal inertia and
albedo are treated as free parameters. Slope, slope azimuth,
dust opacity, solar longitude (season), latitude, and elevation
were fixed inputs to the model. Slope and slope azimuth were
estimated from Navcam imagery. Dust opacity was estimated
by scaling Opportunity dust opacity measurements to match
the elevation for Curiosity [31]. Opportunity data was used
because it is a good approximation and dust opacity data for
Curiosity is not yet published [30].

First the GTS data is filtered to remove measurements
during which the rover is shadowing the measurement, the
measurement falls out of calibration range, or the power supply
is out of nominal operating range. Remaining GTS data points
are low-pass filtered to reduce noise and then binned into 5
minute intervals throughout the day.

Both thermal inertia and albedo are unknown a priori and
estimated following the example of Hamilton et al. [23] by
minimizing the squared error between GTS-measured temper-
atures and the KRC analytical model. Albedo can be roughly
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Fig. 2: Example GTS data and best-fit model. The Xs indicate
data points used to find the thermal inertia and albedo.
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estimated from camera imagery but does not always match
thermally-derived albedo [[17]. Thus to avoid errors in thermal
inertia estimates, albedo is also considered a free parameter.
The optimization uses only GTS temperatures from pre-dawn
and mid-day because the diurnal amplitude is strongly affected
by thermal inertia and using only these measurements reduces
error caused by slope and albedo. An example fit is shown
in Figure 2] When fitting to only these points, the analytical
model underestimates morning and afternoon temperatures,
which is likely due to terrain heterogeneity [23]]

B. Learning Slip Models

A two-expert MoE model is used to predict slip and separate
low-slip sand from high-slip sand. A fairly simple model with
few hyperparameters is used due to the low availability of
data. Here it is assumed that slip, y, in a given type of sandy
terrain, 7T;, is a function of the surface geometry, x. Let X, y,
and I be K x 1 vectors, where K is the number of data points.
Additionally, it is assumed that each of N = 2 terrain classes
can be separated using thermal inertia, /. This results in the
following model for slip in sand:

p(y[l,x,©) = Zm p(ylx, 6;) (6)
where m;(I,v;) is the gating function for sand class 7; with
parameters Vv;, p(y|x, 6;) is the distribution of slip in a given
class with parameters 6;, and ® = {{v;}¥Y,{6,})'}.

The gates are linear softmax functions:

m(Ly) = (v [I.1))
Xex (vim)

)

where each v; is a 2 x 1 weight vector. This simple softmax
function was chosen to essentially provide a threshold on ther-
mal inertia that separates low-slip and high-slip sand. Slip is
modeled as an M"" degree polynomial of slope, y = ¢ (x) + €.
B is an (M +1) x 1 weight vector, ¢(x) = [x",x" ! ..., x! 1],
and € ~ A4 (0,0). If 6; = {B;, 0}, it follows that

N (9(x)B;, 01) ®)

p(y|x,6;) = p(y|x, Bi,0:) =



To reduce overfitting, slip is constrained to never decrease
with increasing slope [15]. A linear model was chosen because
conditioned on the model parameters, the data points are inde-
pendent and identically distributed (i.i.d.), which makes fitting
a MoE model easier than with a nonparametric function [47]).
Expectation Maximization is used to find the parameters ® for
the model following the approach in Yuksel et al. [53]:

(1) E-step. At iteration m, compute expected class assignments
for each sample ¢ given by {y;,x;,I;} [6]:

(m)
P yt|xl71la®j
hgm) (yt|xt711) =N ( )

L (y ’|x“1”®5‘m)>

9)

(2) M-step. Given the expected values for the latent class

assignments, compute model parameters @+
K
v — argmax Y 1™ log 7 (I, V') (10)
v =1

K
60" = argmax Y"1\ log p(yi|xi, B/, ") + ABT B (11)

6,73, t=1

Where A is a regularization parameter to prevent overfitting.
Note that unlike in standard regression models, Equation [IT]
must be solved using constrained optimization due to the non-
decreasing constraint. The E and M steps are alternated and
repeated until convergence. The only design parameters are A
and M. A was set to 1. M was set to 5 because a fifth degree
polynomial was the simplest polynomial able to fit slip curves
for the non-sand terrain classes shown in Figure 3]

V. TESTING DATASET FROM CURIOSITY

This section describes the data from Curiosity. Curiosity is a
six wheeled rover with a rocker-bogie suspension system. It is
3 m long, 2.8 m wide, and has wheels 0.5 m in diameter [21]. Tt
has been operating on Mars since August, 2012 and has driven
over 15 km. Samples from sols 1-986 are considered here,
where a sol refers to a day on Mars. Sand slip measurements
are identified and matched to thermal inertia measurements.
Resampling occurs to reduce data imbalance.

A. Finding Slip Measurements in Sand

To identify slip measurements in sand, a list of all VO slip
measurements was collected. Most drives with VO enabled are
between 0.5 and 1 m in length. Only drives greater than or
equal to 0.5 m in length are considered to reduce measurement
noise. The slip for a given drive is calculated as the average
of all individual wheel slips. This slip magnitude includes
both longitudinal and lateral slip. Slope is the magnitude of
rover tilt averaged over the drive as calculated by the IMU.
Positive slope corresponds to driving up the slope and negative
slope corresponds to driving down the slope regardless of
driving direction (i.e. forward versus reverse). Slip and slope
magnitude were used instead of the longitudinal and lateral
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Fig. 3: Six terrain classes identified by SPOC-G classifier

components to reduce the risk of overfitting. Both slip and
slope were predominantly in the longitudinal direction.

Manually identifying which drives through sand would
likely lead to bias and inconsistencies in the data. Instead,
drives through sand were automatically identified using a
terrain classifier and false positives are manually removed.
Terrain classes are identified by applying the SPOC-G [48]
terrain classifier to Navcam imagery. Figure [3] shows the six
terrain classes SPOC-G identifies.

~2500 Navcam images were classified. The terrain class for
each slip measurement was estimated as the mode class of all
predictions from all images viewing that location. Using the
combination of multiple labeled images for a given location
tends to correctly identify more of the drives in sand; however,
it also leads to more false positives. This is in contrast to
identifying class from only one “best” image as in Rothrock
et al. [48], which has fewer false positives but identifies fewer
of the actual drives in sand. For example, in Figure fa] wheel
tracks in deep sand were predicted to be outcrops in the closest
images but were correctly identified using multiple viewpoints.

Once all sandy regions were automatically identified, false
positives were manually filtered out. Measurements where
fewer than four of the wheels were on sandy terrain were
removed. Examples of correctly identified drives in sand are
shown in Figures @aH4dl Examples of false positives that
were manually removed are shown in Figures [e] and ] At
times it can be difficult to determine exactly what “sand” is.
For example, in Figure [4f] all of the wheels were on sand.
However, under four of the wheels were also rocks on top of
the sand, so these samples were removed.

B. Matching Thermal Inertia

To reduce bias for geologic investigation, Curiosity’s GTS
points off to the side of the rover towards a region that
the rover will never drive over without turning. Thus, slip
measurements rarely overlap with GTS thermal inertia mea-
surements. Instead, thermal inertia for a given slip sample was
estimated by taking the closest sample that shares the same
terrain class as the slip sample (i.e. the closest thermal inertia
measurement classified as sand).

The terrain class of each thermal inertia measurement was
estimated by first finding the region that the sensor was view-
ing. Then the terrain class was found using the same approach



(a) Moosiluake Valley.

(d) Artists Drive.

(b) Hidden Valley.

(e) Sol 799 sand.

ol

(c) Jubilee Pass.

(f) Logan’s Pass.

Fig. 4: Example images of slip measurements in sand colorized by predicted terrain class. (a)—(d) were used in the data set,
(e) and (f) are examples of measurements that were filtered out due to heterogeneous terrain. The red regions indicate the

location of the rover’s wheels during its drive.

(a) Hidden Valley.
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(b) Sol 606 Ripple Crossing.

(c) Moonlight Valley (left) & Dingo Gap.

Fig. 5: Example matches between GTS data and slip data. Slip data points are shown as circular data points at the location of
the center of the rover. Data points are sized and colored by slip. Larger redder data points correspond to more slip. Smaller,
bluer data points are less slip. GTS measurements are the kite-shaped regions and are colored by thermal inertia. Bluer is
lower thermal inertia, redder is higher thermal inertia. Plots are overlaid on top of Hirise orbital imagery with estimated terrain
classes from Navcam imagery. Black lines show each slip measurements matched to the best GTS measurements.

as described in Section [V-A] for slip data. Example matches
are shown in Figure [5] In some cases, there is very clear
overlap between the slip and thermal inertia measurements
(e.g. Figures [5a] and 5B ). In other cases, there is no clear
measurement in that same sand region. This was the case in
Moonlight Valley (on the left of Figure [5¢), so slip samples
from Moonlight valley were not considered in analysis.

For each slip measurement, an orbital estimate of thermal
inertia is also identified using THEMIS data. THEMIS is a
thermal emission spectrometer orbiting Mars that measures
surface temperature at a resolution of 100 m per pixel [11]].
Thermal inertia estimates were taken from data products
produced by the THEMIS team [10]. Thermal inertia for each
sample is identified by finding the corresponding pixel in the
thermal inertia map. An example is shown in Figure

C. Resampling

All of the identified measurements of slip in sand are
summarized in Table [l This table illustrates the small amount
of independent samples available and the imbalance of the
data. There are two main problems: (1) there are only 8
independent regions of sand that Curiosity has driven through
and (2) slip measurements are not evenly distributed between
sites. This data distribution works if it is assumed that each
slip measurement is i.i.d. This is clearly not true since many of
these samples are closely related to samples in the same site.
A more reasonable assumption is that sand characteristics and
resulting slip behavior i.i.d. across the surface. Thus each site
should be treated as a sample and not the slip measurement.
Underrepresented sites are oversampled so that each of the
sites listed in Table [ has the same number of samples.

Because there were few samples at high slopes, four syn-
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Fig. 6: Orbital THEMIS thermal inertia image overlaid on
Hirise camera image. Plotted points show Curiosity’s path and
are sized and colored by slip. Bluer, smaller points have lower
slip. Redder, larger points have higher slip. The colormap
corresponds to the overlaid THEMIS image.

TABLE I: Drives in sand by site name, first sol, number of
samples, maximum slope X, (degrees), maximum slip yax
(percentage), average GTS thermal inertia I5rs, and average
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Site Name Sol Num. Xmax VYmax Igts  ItaeEmis
Moosilauke Valley 672 4 35 797 20 451
Hidden Valley 709 50 74  80.7 31 413
Logans Pass 983 4 96 752 47 438
Logans Pass 978 4 82 598 51 400
Jubilee Pass 747 5 84 154 88 467
Ripple Crossing 683 11 84 479 107 456
Dingo Gap 528 13 139 464 108 478
Ripple Crossing 606 23 8.1 333 109 483
Artists Drive 923 21 164 834 143 456
Total: 9 sites 135

thetic samples were also added for training from the Earth-
calibrated model [24]]. Samples were added at the minimum
slope with 100% slip, X;ax, and —x;;qx With -100%. For Cu-
riosity, X, = 18°. These were repeated at both the maximum
and minimum thermal inertia (for the given instrument). These
constraining points help reduce overfitting to moderate slopes.

VI. RESULTS AND DISCUSSION

Slip samples are plotted in Figure [7] and colorized by
thermal inertia for GTS estimates and THEMIS. The range
of thermal inertia estimates are very different between the
two sources; however, this is not considered problematic since
only within-model comparisons are made [28]]. This
discrepancy is likely influenced by the use of MER dust
opacity estimates and the significantly greater spatial averaging
in the orbital data. Qualitatively, both thermal inertia sources
distinguish between higher-slip sand and lower-slip sand at a
given slope value. In particular, the highest slip data points
either occurred at high slope (~15°) and high thermal inertia
or at lower slope (~5°) but low thermal inertia. The low slope

Slope (Degrees)

Fig. 7: Slip versus slope data and models for sand colorized
by thermal inertia for THEMIS (top) and GTS (bottom).

samples with the highest slip occurred at Moosilauke Valley,
Hidden Valley, and Logan’s Pass. These three regions also
correspond to the GTS lowest thermal inertia.

To quantify the benefit of thermal inertia in slip prediction,
three models were compared: (1) a single-expert model, (2)
a two-expert model using GTS measurements, and (3) a two-
expert model using THEMIS measurements. The single-expert
model does not take into account thermal inertia and learns
slip only as a function of slope (Equation for visually
classified sand. The models are compared based on their root
mean squared error (RMSE) for the best-fit model on all of the
data and using leave-one-out cross validation. In this context,
“leaving one out” means training on data from N — 1 sites
and testing on the remaining site during each iteration of
cross validation. Performance was compared for using both
the original and resampled data.

Slip functions for the single-expert and two-expert models
using resampled data are shown in Figure [8] The two-expert
model shown uses GTS data; however, the THEMIS model
was very similar. Overall results are shown in Table [lIl In all
metrics, the two-expert models that used thermal inertia and
slope had lower error than the single-expert model that only
used slope. This supports the hypothesis that thermal inertia
improves slip prediction on Mars. The rover slips more as
thermal inertia decreases. With resampling, learned thresholds
were 69 and 453m—211(—\/5 for GTS and THEMIS, respectively.

The degraded performance in the cross validation metrics
from the best-fit RMSE suggests that the models are overfitting
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Fig. 8: Slip models for loose sand. Curves for the best-fit
two-expert model using GTS data are plotted in red and blue.
Mean and two-sigma bounds are plotted for both. Samples
are colorized by the most likely expert and sized by relative
weight after resampling. The mean of the single-expert model
is plotted in black. Models learned from resampled data.

the data. However, this is expected given that there are only
9 unique sites. In cross validation the two-expert models
have lower error than the single-expert model showing that
models including thermal inertia have higher predictive per-
formance. The reduction in the best-fit RMSE with resampling
is expected. More samples are clustered around fewer points.
However, the corresponding reduction in cross validation error
suggests that it also improves prediction performance.

The higher cross-validation error for the THEMIS model
with resampling is mostly caused by misclassifying Moosi-
lauke valley. The THEMIS thermal inertia estimate is higher
(relatively) than the GTS estimate (see Table E[) Moosilauke
valley is in a small ripple field surrounded by high thermal
inertia terrain. When THEMIS averages at 100 m resolution,
the result is a higher observed thermal inertia than likely corre-
sponds to the sand alone. Thus, the GTS and THEMIS models
agreed more closely for larger areas of sand. This shows the
benefit of ground-based sampling. It can identify smaller haz-
ardous regions than lower-resolution orbital instruments. Even
the GTS rarely measures a location exactly where the rover
is driving. Heterogeneity also makes it difficult to interpret
terrain as a single “type”. Despite imprecise measurements,
thermal inertia improved slip prediction significantly.

There are several factors that affect traversability in sand:
rover configuration, sand properties, and surface geometry. The
apparent thermal inertia is affected by the physical properties
of the sand grains and depth of the surface layer. Without
ground truth (e.g. for sand depth), it is difficult to determine
exactly how much each factor affected either the thermal iner-
tia measurements or the wheel-terrain interaction. However,
evidence suggests both depth and physical properties were
important. For example, Arvidson et al. [4]] estimate that the
properties of the sand at Dingo Gap were more traversable

TABLE II: Root mean squared error (RMSE) for the best-fit
model using all data and leave-one-out cross validation (CV)
for all models both with and without resampling.

No Resampling Resampling
Model Best-fit CvV Best-fit (0\%
Single Expert (Slope Only) 22.0 30.3 20.5 247
Two-Expert THEMIS 15.9 22.7 150 244
Two-Expert GTS 16.8 20.4 151 18.6

than at Hidden Valley. Higher GTS thermal inertia at Dingo
Gap supports this claim. In addition, on visual inspection, sand
depth is related to both traversability and thermal inertia. Sand
at Artist’s Drive (Figure [4d) appears shallower than other areas
such as Hidden Valley (Figure [b). It had correspondingly
higher thermal inertia and the rover slipped at higher slopes.

VII. CONCLUSIONS

This paper presented an approach for improving slip predic-
tion on Mars by classifying sand using thermal inertia mea-
surements. Slip prediction accuracy was compared among a
single-expert, vision-only model and two-expert models using
both GTS- and THEMIS-based thermal inertia measurements.
Results showed that separating low-slip, high thermal inertia
sand from high-slip, low thermal inertia sand significantly
improved accuracy. Slip predictions from orbital and ground-
based data were similar. However, GTS measurements more
reliably detected smaller regions of hazardous sand. Resam-
pling data by assuming that regions of sand rather than slip
measurements were i.i.d. also improved prediction accuracy.

Given this encouraging empirical evidence and the theo-
retical connection, there is little doubt a correlation exists
between thermal inertia and mobility for rovers operating in
granular materials on Mars. However, the terrain on Mars is
very diverse and Curiosity’s data is limited to measurements
in sand from one region of Mars. More data must be gathered
to determine whether this holds true in other types of terrain
(e.g. duricrust over sand). Before considering implementation,
it is necessary to fully understand what types of hazards can
and can’t be detected, at what times of day, how many of
those hazards couldn’t be detected visually, and how rover
operations would have to be adjusted to account for thermal
inertia measurements. Further analysis should also include
effects of heterogeneous terrain and ripples in sand, which
were likely causes of intraclass variance.

ACKNOWLEDGMENTS

The authors wish to thank Mark Maimone, Sylvain Piqueux,
Masahiro Ono, Jeng Yen, and Ray Arvidson for their help and
advice. We thank the PDS Geosciences Node for providing
image and thermal data. We also thank the Mars Science
Laboratory team for providing the slip data that enabled this
investigation. Portions of this research were carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with NASA. This work was supported by a
NASA Space Technology Research Fellowship.



(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

REFERENCES

Anelia Angelova, Larry Matthies, Daniel Helmick, and
Pietro Perona. Slip Prediction Using Visual Informa-
tion. In Proceedings of Robotics: Science and Systems,
Philadelphia, 2006.

Anelia Angelova, Larry Matthies, Daniel Helmick, and
Pietro Perona. [Learning and Prediction of Slip from
Visual Information. Journal of Field Robotics, 24(3):
205-231, 2007.

R. E. Arvidson, J. F. Bell, P. Bellutta, N. A. Cabrol, J. G.
Catalano, J. Cohen, L. S. Crumpler, D. J. Des Marais,
T. A. Estlin, W. H. Farrand, R. Gellert, J. A. Grant,
R. N. Greenberger, E. A. Guinness, K. E. Herkenhoff,
J. A. Herman, K. D. lagnemma, J. R. Johnson, G. Klin-
gelhofer, R. Li, K. A. Lichtenberg, S. A. Maxwell, D. W.
Ming, R. V. Morris, M. S. Rice, S. W. Ruff, A. Shaw,
K. L. Siebach, P. A. De Souza, A. W. Stroupe, S. W.
Squyres, R. J. Sullivan, K. P. Talley, J. A. Townsend,
A. Wang, J. R. Wright, and A. S. Yen. |Spirit Mars
Rover Mission: Overview and Selected Results from
the Northern Home Plate Winter Haven to the Side of
Scamander crater. Journal of Geophysical Research:
Planets, 115(9):1-19, 2010.

Raymond E. Arvidson, Karl D. ITagnemma, Mark Mai-
mone, Abigail A. Fraeman, Feng Zhou, Matthew C.
Heverly, Paolo Bellutta, David Rubin, Nathan T. Stein,
John P. Grotzinger, and Ashwin R. Vasavada. Mars Sci-
ence Laboratory Curiosity Rover Megaripple Crossings
up to Sol 710 in Gale Crater. Journal of Field Robotics,
2016.

Joshua L. Bandfield, Eugenie Song, Paul O. Hayne, Brit-
tany D. Brand, Rebecca R. Ghent, Ashwin R. Vasavada,
and David A. Paige. Lunar Cold Spots: Granular Flow
Features and Extensive Insulating Materials Surrounding
Young Craters. Icarus, 231:221-231, 2014.

Christopher M. Bishop. Pattern Recognition And Ma-
chine Learning. 2006.

Christopher A. Brooks and Karl lagnemma. |Self-
Supervised Terrain Classification for Planetary Surface
Exploration Rovers. Journal of Field Robotics, 29(3):
445-468, 2012.

W. David Carrier. The Four Things You Need to Know
about the Geotechnical Properties of Lunar Soil. Lunar
Geotechnical Institute, (September):23, 2005.

S. Chhaniyara, C. Brunskill, B. Yeomans, M. C.
Matthews, C. Saaj, S. Ransom, and L. Richter. Ter-
rain Trafficability analysis and Soil Mechanical Property
Identification for Planetary Rovers: A Survey. Journal
of Terramechanics, 49(2):115-128, Apr 2012.

P R Christensen, R L Fergason, C S Edwards, and
J Hill. THEMIS-Derived Thermal Inertia Mosaic_of]
Mars: Product Description and Science Results. 44th
Lunar and Planetary Science Conference, page Abstract
#2822, 2013.

Philip R Christensen, Bruce M Jakosky, Hugh H Kieffer,

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

Michael C Malin, Harry Y Mcsween, Kenneth Neal-
son, Greg L. Mehall, Steven H Silverman, Steven Ferry,
Michael Caplinger, and Michael Ravine. The Thermal
Emission System (THEMIS) for the Mars 2001 Odyssey
Mission. Space Science Reviews, 110:85-130, 2004.
Christopher Cunningham, Issa Nesnas, and William L
Whittaker. [Terrain Traversability Prediction by Imaging
Thermal Transients. In IEEE Conference on Robotics
and Automation, pages 3947-3952, Seattle, 2015.
Christopher Cunningham, Uland Wong, Kevin M. Peter-
son, and William L. Red Whittaker. Predicting Terrain
Traversability from Thermal Diffusivity. In Field and
Service Robotics, volume 105, pages 61-74, Brisbane,
Australia, 2015.

Christopher Cunningham, William L. Whittaker, and Issa
Nesnas. Detecting Loose Regolith in Lunar Craters Using
Thermal Imaging. In ASCE Conference on Earth and
Space, 2016.

Christopher Cunningham, Masahiro Ono, Issa Nesnas,
Jeng Yen, and William L. Whittaker. Locally-Adaptive
Slip Prediction for Planetary Rovers Using Gaussian Pro-
cesses. In IEEE Conference on Robotics and Automation,
2017.

R. L. Fergason, P. R. Christensen, M. P. Golombek, and
T. J. Parker. Surface Properties of the Mars Science
Laboratory Candidate Landing Sites: Characterization
from Orbit and Predictions. Space Science Reviews, 170
(1-4):739-773, May 2012.

Robin L. Fergason, Philip R. Christensen, James F.
Bell, Matthew P. Golombek, Kenneth E. Herkenhoff,
and Hugh H. Kieffer. Physical Properties of the Mars
Exploration Rover Landing Sites as Inferred from Mini-
TES-Derived Thermal Inertia. Journal of Geophysical
Research: Planets, 111(2):E02S21, 2006.

Robin L. Fergason, Philip R. Christensen, and Hugh H.
Kieffer. High-Resolution Thermal Inertia Derived from
the Thermal Emission Imaging System (THEMIS): Ther-
mal Model and Applications. Journal of Geophysical
Research: Planets, 111(12):1-22, 2006.

Steven B. Goldberg, Mark W. Maimone, and Lany
Matthies. Stereo Vision and Rover Navigation Software
for Planetary Exploration. In IEEE Aerospace Confer-
ence Proceedings, volume 5, pages 2025-2036, 2002.
M. Golombek, J. Grant, D. Kipp, A. Vasavada,
R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen,
Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker,
B. Pollard, S. Lee, Y. Sun, R. Hoover, H. Sladek,
J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, and
M. Watkins. Selection of the Mars Science Laboratory
Landing Sitel Space Science Reviews, 170(1-4):641-737,
2012.

John P. Grotzinger, Joy Crisp, Ashwin R. Vasavada,
Robert C. Anderson, Charles J. Baker, Robert Barry,
David F. Blake, Pamela Conrad, Kenneth S. Edgett,
Bobak Ferdowski, Ralf Gellert, John B. Gilbert, Matt
Golombek, Javier Gémez-Elvira, Donald M. Hassler,


http://www.roboticsproceedings.org/rss02/p14.pdf
http://www.roboticsproceedings.org/rss02/p14.pdf
http://onlinelibrary.wiley.com/doi/10.1002/rob.20179/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.20179/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2010JE003633/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2010JE003633/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2010JE003633/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2010JE003633/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21647/
http://onlinelibrary.wiley.com/doi/10.1002/rob.21647/
http://onlinelibrary.wiley.com/doi/10.1002/rob.21647/
http://www.sciencedirect.com/science/article/pii/S0019103513005356
http://www.sciencedirect.com/science/article/pii/S0019103513005356
http://www.sciencedirect.com/science/article/pii/S0019103513005356
http://onlinelibrary.wiley.com/doi/10.1002/rob.21408/full
http://onlinelibrary.wiley.com/doi/10.1002/rob.21408/full
http://onlinelibrary.wiley.com/doi/10.1002/rob.21408/full
http://www.lpi.usra.edu/lunar/surface/carrier_lunar_soils.pdf
http://www.lpi.usra.edu/lunar/surface/carrier_lunar_soils.pdf
http://dx.doi.org/10.1016/j.jterra.2012.01.001
http://dx.doi.org/10.1016/j.jterra.2012.01.001
http://dx.doi.org/10.1016/j.jterra.2012.01.001
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2822.pdf
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2822.pdf
http://link.springer.com/chapter/10.1007%2F978-0-306-48600-5_3#page-1
http://link.springer.com/chapter/10.1007%2F978-0-306-48600-5_3#page-1
http://link.springer.com/chapter/10.1007%2F978-0-306-48600-5_3#page-1
http://ieeexplore.ieee.org/document/7139750/
http://ieeexplore.ieee.org/document/7139750/
http://ieeexplore.ieee.org/document/7139750/
http://ieeexplore.ieee.org/document/7139750/
http://www.cs.cmu.edu/afs/cs/usr/clcunnin/www/ASCE_Paper_camera_ready.pdf
http://www.cs.cmu.edu/afs/cs/usr/clcunnin/www/ASCE_Paper_camera_ready.pdf
http://www.cs.cmu.edu/afs/cs/usr/clcunnin/www/locally-adaptive-slip.pdf
http://www.cs.cmu.edu/afs/cs/usr/clcunnin/www/locally-adaptive-slip.pdf
http://www.cs.cmu.edu/afs/cs/usr/clcunnin/www/locally-adaptive-slip.pdf
http://link.springer.com/10.1007/s11214-012-9891-3
http://link.springer.com/10.1007/s11214-012-9891-3
http://link.springer.com/10.1007/s11214-012-9891-3
http://doi.wiley.com/10.1029/2005JE002583
http://doi.wiley.com/10.1029/2005JE002583
http://doi.wiley.com/10.1029/2005JE002583
http://doi.wiley.com/10.1029/2006JE002735
http://doi.wiley.com/10.1029/2006JE002735
http://doi.wiley.com/10.1029/2006JE002735
http://ieeexplore.ieee.org/document/1035370/
http://ieeexplore.ieee.org/document/1035370/
http://link.springer.com/10.1007/s11214-012-9916-y
http://link.springer.com/10.1007/s11214-012-9916-y

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Louise Jandura, Maxim Litvak, Paul Mahaffy, Justin
Maki, Michael Meyer, Michael C. Malin, Igor Mitro-
fanov, John J. Simmonds, David Vaniman, Richard V.
Welch, and Roger C. Wiens. Mars Science Laboratory
Mission and Science Investigation, volume 170. 2012.
Ibrahim Halatci, Christopher A. Brooks, and Karl Iag-
nemma. Terrain Classification and Classifier Fusion
for Planetary Exploration Rovers. In IEEE Aerospace
Conference Proceedings, pages 1-11. leee, 2007.
Victoria E. Hamilton, Ashwin R. Vasavada, Eduardo
Sebastiiann, Manuel De La Torre Juarez, Miguel Ramos,
Carlos Armiens, Raymond E. Arvidson, Isaias Carrasco,
Philip R. Christensen, Miguel A. De Pablo, Walter Goetz,
Javier Gomez-Elvira, Mark T. Lemmon, Morten B. Mad-
sen, F. Javier Martin-Torres, Jesus Martinez-Frias, Anto-
nio Molina, Marisa C. Palucis, Scot C R Rafkin, Mark 1.
Richardson, R. Aileen Yingst, and Maria Paz Zorzano.
Observations and Preliminary Science Results from the
First 100 Sols of MSL Rover Environmental Monitoring
Station Ground Temperature Sensor Measurements at
Gale Crater. Journal of Geophysical Research: Planets,
119(4):745-770, 2014.

Matt Heverly, Jaret Matthews, Justin Lin, Dan Fuller,
Mark Maimone, Jeffrey Biesiadecki, and John Leichty.
Traverse Performance Characterization for the Mars Sci-
ence Laboratory Rover. Journal of Field Robotics, 30
(6):835-846, 2013.

Ken Ho, Thierry Peynot, and Salah Sukkarieh. Nonpara-
metric Traversability Estimation in Partially Occluded
and Deformable Terrain, 2016.

Ogbonnaya Igwe, Kyoji Sassa, and Fawu Wang. The
Influence of Grading on the Shear Strength of Loose
Sands in Stress-Controlled Ring Shear Tests. Landslides,
4(1):43-51, 2007.

Bruce M. Jakosky. On the Thermal Properties of Martian
Fines. Icarus, 66(1):117-124, 1986.

Hugh H. Kieffer. Thermal Model for Analysis of Mars
Infrared Mapping. Journal of Geophysical Research:
Planets, 118(3):451-470, 2013.

Poul V. Lade and Daniel D Overton. |Cementation
Effects in Frictional Materials. Journal of Geotechnical
Engineering, 115(10):1373-1387, 1989.

Mark T. Lemmon. The Mars Science Laboratory Optical
Depth Record. In LPI Contributions, pages 1-2, 2014.
Mark T. Lemmon, Michael J. Wolff, James F. Bell,
Michael D. Smith, Bruce A. Cantor, and Peter H. Smith.
Dust Aerosol, Clouds, and the Atmospheric Optical
Depth Record Over 5 Mars Years of the Mars Exploration
Rover Mission. Icarus, 251:96-111, 2015.

Mark Maimone. No A Martian Vision: Impact of JPL
Robotics Vision and Mobility Research on the Mars
Rovers. In JPL Robotics Section Senior Lecture Series,
2016.

Mark Maimone, Yang Cheng, and Larry Matthies. Two
Years of Visual Odometry on the Mars Exploration
Rovers. Journal of Field Robotics, 24(3):169—-186, 2007.

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

G. M. Martinez, N. Rennd, E. Fischer, C. S. Borlina,
B. Hallet, M. De La Torre Juarez, A. R. Vasavada,
M. Ramos, V. Hamilton, J. Gomez-Elvira, and R. M.
Haberle. [Surface Energy Budget and Thermal Inertia at
Gale Crater: Calculations from Ground-Based Measure-
ments, Journal of Geophysical Research: Planets, 119
(8):1822-1838, 2014.

M T Mellon, B M Jakosky, H H Kieffer, and P R
Christensen. High-Resolution Thermal Inertia Mapping
from the Mars Global Surveyor Thermal Emission Spec-
trometer. Icarus, 148(2):437—-455, Dec 2000.

Julia K. Morgan. Numerical Simulations of Granular
Shear Zones Using the Distinct Element Method 2 .
Effects of Particle Size Distribution and Interparticle
Friction on Mechanical Behavior. Journal of Geophysical
Research, 104(B2):2721-2732, 1999.

Kyohei Otsu, Masahiro Ono, Thomas J. Fuchs, Ian
Baldwin, and Takashi Kubota. Autonomous Terrain Clas-
sification With Co- and Self-Training Approach. [EEE
Robotics and Automation Letters, 1(2):814-819, 2016.
Howard A. Perko, John D. Nelson, and Jacklyn R. Green.
Mars Soil Mechanical Properties and Suitability of Mars
Soil Simulants. Journal of Aerospace Engineering, 19
(July):169-176, 2006.

S. Piqueux and P. R. Christensen. /A Model of Thermal
Conductivity for Planetary Soils: 2. Theory for Unconsol-
idated Soils. Journal of Geophysical Research: Planets,
114(9):1-20, 2009.

S. Piqueux and P. R. Christensen. /A Model of Thermal
Conductivity for Planetary Soils: 2. Theory for Cemented
Soils. Journal of Geophysical Research: Planets, 114(9):
1-20, 2009.

M A Presley and P R Christensen. Thermal Conductivity
Measurements of Particulate Materials: 5. Effect of Bulk
density and Particle Shape. Journal of Geophysical
Research: Planets, 115(E7):13, jul 2010.

Marsha A Presley and Philip R Christensen. Thermal
Conductivity Measurements of Particulate Materials 2.
Results. Journal of Geophysical Research: Planets, 102
(E3):6551-6566, 1997.

John C. Price. Thermal Inertia Mapping: A New View
of the Earth. Journal of Geophysical Research, 82(18):
2582, 19717.

Nathaniel E. Putzig. Thermal Inertia and Surface Het-
erogeneity on Mars. PhD thesis, University of Colorado,
2006.

Nathaniel E. Putzig and Michael T. Mellon. |Apparent
Thermal Inertia and the Surface Heterogeneity of Mars,
Icarus, 191(1):68-94, 2007.

N.E. Putzig, M.T. Mellon, B.M. Jakosky, S.M. Pelkey,
S. Martinez-Alonso, B.M. Hynek, and N.W. Murphy.
Mars Thermal Inertia from THEMIS Data. Lunar and
Planetary Science Conference, 35:1863, 2004.

Carl Edward Rasmussen and Zoubin Ghahramani. |In-
finite Mixtures of Gaussian Process Experts. Advances
in Neural Information Processing Systems, 2:881-888,


http://link.springer.com/article/10.1007/s11214-012-9892-2
http://link.springer.com/article/10.1007/s11214-012-9892-2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4161556
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4161556
http://onlinelibrary.wiley.com/doi/10.1002/2013JE004520/full
http://onlinelibrary.wiley.com/doi/10.1002/2013JE004520/full
http://onlinelibrary.wiley.com/doi/10.1002/2013JE004520/full
http://onlinelibrary.wiley.com/doi/10.1002/2013JE004520/full
http://onlinelibrary.wiley.com/doi/10.1002/rob.21481/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21481/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21646/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21646/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21646/abstract
http://link.springer.com/article/10.1007/s10346-006-0051-2
http://link.springer.com/article/10.1007/s10346-006-0051-2
http://link.springer.com/article/10.1007/s10346-006-0051-2
http://linkinghub.elsevier.com/retrieve/pii/0019103586900114
http://linkinghub.elsevier.com/retrieve/pii/0019103586900114
http://doi.wiley.com/10.1029/2012JE004164
http://doi.wiley.com/10.1029/2012JE004164
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9410%281989%29115%3A10%281373%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9410%281989%29115%3A10%281373%29
http://adsabs.harvard.edu/abs/2014LPICo1791.1338L
http://adsabs.harvard.edu/abs/2014LPICo1791.1338L
http://dx.doi.org/10.1016/j.icarus.2014.03.029
http://dx.doi.org/10.1016/j.icarus.2014.03.029
http://dx.doi.org/10.1016/j.icarus.2014.03.029
https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/JPLRoboticsImpactOnMarsRovers.pdf
https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/JPLRoboticsImpactOnMarsRovers.pdf
https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/JPLRoboticsImpactOnMarsRovers.pdf
http://doi.wiley.com/10.1002/rob.20184
http://doi.wiley.com/10.1002/rob.20184
http://doi.wiley.com/10.1002/rob.20184
http://onlinelibrary.wiley.com/doi/10.1002/2014JE004618/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2014JE004618/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2014JE004618/abstract
http://www.sciencedirect.com/science/article/pii/S0019103500965035
http://www.sciencedirect.com/science/article/pii/S0019103500965035
http://www.sciencedirect.com/science/article/pii/S0019103500965035
http://onlinelibrary.wiley.com/doi/10.1029/1998JB900055/abstract
http://onlinelibrary.wiley.com/doi/10.1029/1998JB900055/abstract
http://onlinelibrary.wiley.com/doi/10.1029/1998JB900055/abstract
http://onlinelibrary.wiley.com/doi/10.1029/1998JB900055/abstract
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7397920
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7397920
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0893-1321(2006)19{%}3A3(169)
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0893-1321(2006)19{%}3A3(169)
http://doi.wiley.com/10.1029/2008JE003308
http://doi.wiley.com/10.1029/2008JE003308
http://doi.wiley.com/10.1029/2008JE003308
http://doi.wiley.com/10.1029/2008JE003309
http://doi.wiley.com/10.1029/2008JE003309
http://doi.wiley.com/10.1029/2008JE003309
http://onlinelibrary.wiley.com/doi/10.1029/2009JE003483/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2009JE003483/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2009JE003483/abstract
http://dx.doi.org/10.1029/96JE03303
http://dx.doi.org/10.1029/96JE03303
http://dx.doi.org/10.1029/96JE03303
http://onlinelibrary.wiley.com/doi/10.1029/JC082i018p02582/full
http://onlinelibrary.wiley.com/doi/10.1029/JC082i018p02582/full
http://adsabs.harvard.edu/abs/2006PhDT........15P
http://adsabs.harvard.edu/abs/2006PhDT........15P
http://linkinghub.elsevier.com/retrieve/pii/S001910350700231X
http://linkinghub.elsevier.com/retrieve/pii/S001910350700231X
http://adsabs.harvard.edu/abs/2004LPI....35.1863P
https://papers.nips.cc/paper/2055-infinite-mixtures-of-gaussian-process-experts
https://papers.nips.cc/paper/2055-infinite-mixtures-of-gaussian-process-experts

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

2002.

Brandon Rothrock, Jeremie Papon, Ryan Kennedy,
Masahiro Ono, Matt Heverly, and Christopher Cunning-
ham. SPOC : Deep Learning-based Terrain Classification
for Mars Rover Missions. In AIAA: Space, 2016.
Eduardo Sebastian, Carlos Armiens, Javier Goémez-
Elvira, Maria P. Zorzano, Jesus Martinez-Frias, Blanca
Esteban, and Miguel Ramos. The Rover Environmen-
tal Monitoring Station Ground Temperature Sensor: A
Pyrometer for Measuring Ground Temperature on Mars.
Sensors, 10(10):9211-9231, 2010.

S. W. Squyres, R. E. Arvidson, D. Bollen, James F.
Bell, J. Bruckner, N. A. Cabrol, W. M. Calvin, M. H.
Carr, Philip R. Christensen, B. C. Clark, L. Crumpler,
D. J. Des Marais, C. D’Uston, T. Economou, J. Farmer,
W. H. Farrand, W. Folkner, R. Gellert, Timothy D.
Glotch, Matthew P. Golombek, S. Gorevan, J. A. Grant,
R. Greeley, J. Grotzinger, K. E. Herkenhoff, S. Hviid, Jef-
frey R. Johnson, G. Klingelhofer, A. H. Knoll, G. Landis,
Mark T. Lemmon, R. Li, M. B. Madsen, M. C. Malin,
S. M. McLennan, H. Y. McSween, D. W. Ming, J. Mo-
ersch, R. V. Morris, T. Parker, Jr W. Rice, L. Richter,
R. Rieder, C. Schroder, M. Sims, M. Smith, P. Smith,
L. A. Soderblom, R. J. Sullivan, N. J. Tosca, H. Wanke,
T. Wdowiak, Michael J. Wolff, and Albert S. Yen.
Overview of the Opportunity Mars Exploration Rover
Mission to Meridiani Planum: Eagle Crater to Purgatory
Ripple. Journal of Geophysical Research: Planets, 111
(12):1-19, 2006.

Ashwin R. Vasavada, Joshua L. Bandfield, Benjamin T.
Greenhagen, Paul O. Hayne, Matthew A. Siegler,
Jean Pierre Williams, and David A. Paige. Lunar Equato-
rial Surface Temperatures and Regolith Properties from
the Diviner Lunar Radiometer Experiment. Journal of
Geophysical Research: Planets, 117(4):1-12, Dec 2012.
Li Chang Wang, Wei Long, and Shi Juan Gao. [Effect
of Moisture Content, Void Ratio and Compacted Sand
Content on the Shear Strength of Remolded Unsaturated
Clay. Electronic Journal of Geotechnical Engineering,
19(Q):4413-4426, 2014.

Anwar EZ Wissa, Charles Cushing Ladd, and T. William
Lambe. Effetive Stress Strength Parameters of Stabilized
Soils. In MIT Department of Civil Engineering, 1964.
J. Y. Wong. Predicting the Performances of Rigid
Rover Wheels on Extraterrestrial Surfaces Based on Test
Results Obtained on Earth. Journal of Terramechanics,
49(1):49-61, 2012.

Seniha Esen Yuksel, Joseph N. Wilson, and Paul D.
Gader. Twenty Years of Mixture of Experts. IEEE
Transactions on Neural Networks and Learning Systems,
23(8):1177-1193, 2012.


http://arc.aiaa.org/doi/abs/10.2514/6.2016-5539
http://arc.aiaa.org/doi/abs/10.2514/6.2016-5539
http://www.mdpi.com/1424-8220/10/10/9211
http://www.mdpi.com/1424-8220/10/10/9211
http://www.mdpi.com/1424-8220/10/10/9211
http://onlinelibrary.wiley.com/doi/10.1029/2006JE002771/full
http://onlinelibrary.wiley.com/doi/10.1029/2006JE002771/full
http://onlinelibrary.wiley.com/doi/10.1029/2006JE002771/full
http://doi.wiley.com/10.1029/2011JE003987
http://doi.wiley.com/10.1029/2011JE003987
http://doi.wiley.com/10.1029/2011JE003987
http://www.ejge.com/2014/Ppr2014.416ma.pdf
http://www.ejge.com/2014/Ppr2014.416ma.pdf
http://www.ejge.com/2014/Ppr2014.416ma.pdf
http://www.ejge.com/2014/Ppr2014.416ma.pdf
http://dx.doi.org/10.1016/j.jterra.2011.11.002
http://dx.doi.org/10.1016/j.jterra.2011.11.002
http://dx.doi.org/10.1016/j.jterra.2011.11.002
http://ieeexplore.ieee.org/abstract/document/6215056/

	Introduction
	Related Work
	Relating Thermal Inertia and Mobility
	Analytical Surface Temperature Model
	Thermal Inertia
	Relation to Mobility

	Slip Prediction with Thermal Inertia Classes
	Thermal Inertia Estimation
	Learning Slip Models

	Testing Dataset from Curiosity
	Finding Slip Measurements in Sand
	Matching Thermal Inertia
	Resampling

	Results and Discussion
	Conclusions

